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The electromagnetic fields in beam waveguides and Fabry-Perot resonators can be described in
terms of axially propagating reiterative beam modes having a cross-sectional field distribut}ion which
can be reconstituted at periodic intervals. In the resonator case, the period of iteration is one round
trip of the beam between the two reflectors. The iteration is accomplished either by diffraction effected
by limiting the beam cross-section or by transformation of the cross-sectional phase distribution of
the beam. The first case applies to the iris-type (Reference 1) beam waveguides and to Fabry-Perot
(Reference 2) resonators with plane reflectors and the second to lens-type beam waveguides (References

3 and 4) and to resonators with spherical reflectors (References 2 and 5).

This paper is concerned with ring-shaped resonators as shown in Figures 1 and 2 whose field can
be described by beam modes with similar properties but with radial rather than axial propagation.

Postulating such modes the resonant field can be physically explained as follows:

Consider a beam which originates at the inner surface of the circular reflector strip and converges
toward the axis of the resonator. After crossing the center area the beam diverges and returns to the
reflector. The condition for resonance is that the field of the returning beam when reflected on the
circular strip has the same cross-sectional amplitude and phase distribution as the original beam.,

Then the reflected beam can be identified with the original beam and the assumed state of excitation
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Figure 1. Ring-Shaped Resonator
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Figure 2. Ring-Shaped Resonator Curved within the Constant ¢ 1’lane

1s sustained, disregarding the diffraction loss due 1o the small fraction of cneray hy-passing the 1c-
flector The mathematical formulation of this iteration problem leads to the following integral equa-
tion for the electric or the magnetic vector potential <I>Z (z 1s the unmit vector of the Z-direction 1n the

coordinate system of Figure 1)
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The Hankel functions of the first and second kind are Hm . ”m respectively, The d ameter of the
ring reflector is 2p0 and 2a 18 1ts width. The symbol |p| is the amplitude ratio between the .naident
and returning beam, p-p*> determines the diffraction loss of ihe reflector. If the beam < cons:idercd

as a bundle of clementary plane waves, h and y are determincd by the angles of th du«ction vt prop-

agation against the Z - axis
Y = k sin q, h =k cos «

Small reflection losses require the beam to contain essentially only planc waves with propagation
angles o close to 90 degrees. If one furthermore assumes that the radius P 15 very Jarg : compared

to the wave length, the kernel of the integral equation reduces 1o
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With this kernel the integral equation 1s 1dentical with that of the 1nfinite parallel strip reflector

treated by Fox and L1 (Reference 2},
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Of more practical interest are resonators which are curved within the constant ¢ planes as shown

1n Figure 2. If the radius of curvature 1s R, the kernel 1s modified to
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In the special case R = 2p0, the kernel reduces to a Fourier kernel whose eigen~-functions are pro-
late spherocidal wave functions. This case 1s of particular interest in that the diffraction loss 1s at a
minimum for given resonator dimensions fo anda. k-2 ig sufficiently large the field distribution
inside the resonator can be described for the various modeg by the potential function
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Thne field components are derived from the eleciric and from the magnetic vector potentials &-z 1n

the usual manner, The resonant wave lengths X n are given by

1,m,
1 for the modes derived from the electric vector potential

=B

—2‘ for the modes derived from the magnetic vector potential

where 1,m and n are integers.
The field distribution of these modes, their orthogonality relations and their radiation char-
acteristics (1f the reflector 1s partially transparent) will be discussed.
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